(電子商務(wù)研究中心訊) (中國(guó)電子商務(wù)研究中心訊)從本期開(kāi)始將會(huì)帶大家從微觀的視角,分領(lǐng)域來(lái)仔細(xì)研究海外大數(shù)據(jù)行業(yè)的各類應(yīng)用。
今天我們將聚焦于大數(shù)據(jù)的分析、可視化及BI領(lǐng)域。
雖然這三個(gè)領(lǐng)域在功能及應(yīng)用范圍上各有千秋,但實(shí)質(zhì)上可以說(shuō)是相輔相成:通過(guò)大數(shù)據(jù)的基礎(chǔ)分析工具,研究人員可以獲得數(shù)據(jù)內(nèi)部的邏輯及結(jié)果表現(xiàn),但通常這些結(jié)果過(guò)于復(fù)雜并缺乏合理的表達(dá)形式,使數(shù)據(jù)科學(xué)家及企業(yè)的管理者無(wú)法快速領(lǐng)會(huì)并對(duì)經(jīng)營(yíng)活動(dòng)進(jìn)行調(diào)整。
因此大數(shù)據(jù)的可視化方案應(yīng)運(yùn)而生,多數(shù)可視化方案都作為數(shù)據(jù)分析工具的延伸而存在,但也有少部分公司另辟蹊徑,采用非傳統(tǒng)方式將數(shù)據(jù)的可視化更加貼近需求。BI則是大數(shù)據(jù)分析和可視化與業(yè)務(wù)場(chǎng)景的結(jié)合,作為企業(yè)內(nèi)部管理工具,使企業(yè)的價(jià)值有了極大的增長(zhǎng),成為了大數(shù)據(jù)應(yīng)用領(lǐng)域重要的一環(huán)。
以上三個(gè)領(lǐng)域在國(guó)內(nèi)也有許多優(yōu)秀的企業(yè),我們歡迎該領(lǐng)域的企業(yè)家和投資人與我們一同探討,共同進(jìn)步。
以下,供你參考。
第一
大數(shù)據(jù)分析領(lǐng)域,在朝向易用、簡(jiǎn)單化發(fā)展
大部分大數(shù)據(jù)分析企業(yè)的現(xiàn)狀,可以說(shuō)是將數(shù)據(jù)的分析、可視化及數(shù)據(jù)的采集、治理、集成進(jìn)行了一體化,以大數(shù)據(jù)的分析平臺(tái)形式存在。例如Fractal Analytics除了具備數(shù)據(jù)分析功能外,還提供自動(dòng)化數(shù)據(jù)清理及驗(yàn)證服務(wù),能夠返回標(biāo)準(zhǔn)化的結(jié)構(gòu)化數(shù)據(jù);Voyager Labs則能夠?qū)崟r(shí)采集、分析遍布世界各地的數(shù)十億個(gè)數(shù)據(jù)點(diǎn),幫助用戶進(jìn)行預(yù)測(cè)。
上述典型公司主要面向大型企業(yè)進(jìn)行定制化全流程服務(wù),客單價(jià)有時(shí)高達(dá)千萬(wàn)美元級(jí)別,例如Fractal Analytics的客戶就包括飛利浦、金佰利等大型公司,其高昂的價(jià)格及服務(wù)令小型企業(yè)望塵莫及。
但隨著大數(shù)據(jù)技術(shù)的逐漸普及,SaaS化的大數(shù)據(jù)分析服務(wù)將是一個(gè)明確的發(fā)展方向,而其使用門(mén)檻也將大幅降低,從而將大數(shù)據(jù)分析的能力逐步賦予給中小企業(yè),以真正的實(shí)現(xiàn)其基礎(chǔ)資源的價(jià)值。同時(shí)確保企業(yè)數(shù)據(jù)安全的數(shù)據(jù)脫敏、數(shù)據(jù)保護(hù)市場(chǎng)也會(huì)隨著SaaS化的到來(lái)而逐步拓展出新的市場(chǎng)空間。
目前大數(shù)據(jù)技術(shù)簡(jiǎn)化、低成本、易用的趨勢(shì)已經(jīng)在部分公司的產(chǎn)品策略上有所體現(xiàn),例如大數(shù)據(jù)分析公司Domino的產(chǎn)品讓數(shù)據(jù)科學(xué)家只需專注于自己的分析工作,而不用關(guān)注軟硬件基礎(chǔ)設(shè)施的建立及維護(hù),Datameer更進(jìn)一步開(kāi)發(fā)出的產(chǎn)品屏蔽了復(fù)雜的大數(shù)據(jù)分析底層技術(shù),通過(guò)類似電子表格的可視化數(shù)據(jù)分析用戶界面,讓企業(yè)的員工能夠快速上手使用,RapidMiner Studio可零代碼操作客戶端,實(shí)現(xiàn)機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、文本挖掘、預(yù)測(cè)性分析等功能。
在大數(shù)據(jù)分析能力普及的同時(shí),提升數(shù)據(jù)分析性能、優(yōu)化數(shù)據(jù)分析結(jié)果的技術(shù)研發(fā)也在快速進(jìn)展中。例如SigOpt通過(guò)自主開(kāi)發(fā)的貝葉斯優(yōu)化(Bayesian Optimization)算法來(lái)調(diào)整模型的參數(shù),獲得了比常見(jiàn)的網(wǎng)格搜索(grid searching technique)解決方案更快、更穩(wěn)定、更易于使用的結(jié)果,目前SigOpt的產(chǎn)品不僅可以讓用戶測(cè)試不同變量,還能夠提供下一步的測(cè)試建議,以幫助用戶持續(xù)優(yōu)化改善數(shù)據(jù)分析結(jié)果。
令人感到欣喜的是,在大數(shù)據(jù)分析領(lǐng)域還存在著一些顛覆了傳統(tǒng)數(shù)據(jù)分析理論,采用獨(dú)特方式方法進(jìn)行數(shù)據(jù)分析的公司。這類公司的技術(shù)對(duì)傳統(tǒng)數(shù)據(jù)分析方法進(jìn)行了很好的補(bǔ)充,在特定領(lǐng)域有著成功的應(yīng)用。
這類公司中的典型之一是由三位全球頂尖的數(shù)學(xué)家創(chuàng)立的Ayasdi,它利用拓?fù)鋽?shù)據(jù)分析技術(shù)和上百種機(jī)器學(xué)習(xí)的算法來(lái)處理復(fù)雜的數(shù)據(jù)集,不僅可以有效地捕捉高維數(shù)據(jù)空間的拓?fù)湫畔ⅲ疑瞄L(zhǎng)發(fā)現(xiàn)一些用傳統(tǒng)方法無(wú)法發(fā)現(xiàn)的小分類,這種方法目前在基因與癌癥研究領(lǐng)域大顯身手,例如一位醫(yī)生利用Ayasdi的數(shù)據(jù)分析技術(shù)發(fā)現(xiàn)了乳腺癌的14個(gè)變種,如今Ayasdi已經(jīng)在金融服務(wù)和醫(yī)療保健行業(yè)中獲得了相當(dāng)數(shù)量的客戶。
第二
可視化技術(shù),逐步實(shí)現(xiàn)了自動(dòng)化、智能化
星河研究院在上周的文章中提到,大數(shù)據(jù)可視化是連接數(shù)據(jù)分析結(jié)果與人腦的最好途徑,因此可視化技術(shù)的高低也成為了左右大數(shù)據(jù)企業(yè)獲客能力的重要因素。目前可視化的發(fā)展方向同大數(shù)據(jù)分析一致,都是朝著簡(jiǎn)單、自動(dòng)化、智能的方向在努力。
典型企業(yè)如Alteryx是一個(gè)提供一站式數(shù)據(jù)分析平臺(tái)的初創(chuàng)公司,旨在讓用戶在同一個(gè)平臺(tái)上完成數(shù)據(jù)輸入、建模以及數(shù)據(jù)圖形化等操作,將數(shù)據(jù)運(yùn)算與精美的圖像完美地嫁接在一起,并能夠和SAS和R語(yǔ)言一樣進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)和分析。
通過(guò)可視化幫助用戶實(shí)現(xiàn)真正的管理能力提升也是重要的功能之一,德國(guó)大數(shù)據(jù)公司Celonis通過(guò)流程挖掘技術(shù),從日常記錄中提取數(shù)據(jù)、發(fā)現(xiàn)關(guān)鍵因素,并最終揭示公司在業(yè)務(wù)中的執(zhí)行情況,能夠幫助客戶公司提高30%的工作效率。
發(fā)展到如今,可視化技術(shù)已經(jīng)不局限于傳統(tǒng)的分析結(jié)果展示,而是能夠直接轉(zhuǎn)換文本、圖片等非結(jié)構(gòu)化的數(shù)據(jù)并直觀展現(xiàn),例如Quid利用機(jī)器智能讀取大量文本,然后將該數(shù)據(jù)轉(zhuǎn)換為交互式視覺(jué)地圖,以節(jié)約過(guò)去通常會(huì)耗費(fèi)在閱讀檢索中的大量時(shí)間。Origami幫助營(yíng)銷人員將CRM、社交媒體、郵件營(yíng)銷和調(diào)查報(bào)告等跨平臺(tái)的數(shù)據(jù)整合并進(jìn)行有效分析,使其簡(jiǎn)單化、直觀化、視覺(jué)化,人人都能夠高效實(shí)用。
同時(shí)數(shù)據(jù)分析及可視化對(duì)硬件應(yīng)用的革新也在進(jìn)行中,本周二我們與星河研究院發(fā)布的文章《向IPO進(jìn)發(fā)!日志管理分析平臺(tái)Sumo Logic獲7500萬(wàn)美元F輪融資》提到開(kāi)發(fā)GPU關(guān)系數(shù)據(jù)庫(kù)服務(wù)的Kinetica獲得了5000萬(wàn)美元A輪融資,采用同一技術(shù)路線的MapD也已經(jīng)能夠做到比傳統(tǒng)計(jì)算內(nèi)核快100倍的速度對(duì)大數(shù)據(jù)進(jìn)行查詢與可視化。
如果希望了解全部的海外大數(shù)據(jù)分析公司詳細(xì)信息,請(qǐng)關(guān)注公眾號(hào),回復(fù)“大數(shù)據(jù)”進(jìn)行下載
第三
BI技術(shù)擺脫“雞肋”,實(shí)時(shí)、便捷普惠政企效率提升
BI技術(shù)的發(fā)展已經(jīng)有了較長(zhǎng)的歷史,但由于技術(shù)因素此前一直被限制于企業(yè)內(nèi)部采集與應(yīng)用,實(shí)際發(fā)揮的效果有限并且使用率不高。如今在數(shù)據(jù)采集與應(yīng)用范圍普及與大數(shù)據(jù)分析、可視化技術(shù)的推動(dòng)下,通過(guò)數(shù)據(jù)儀表板、智能決策等方式提升企業(yè)運(yùn)營(yíng)效率利器的BI再次獲得了資本市場(chǎng)的青睞,Tableau作為BI的代表性企業(yè)已經(jīng)順利IPO目前市值超過(guò)48億美元,另一家代表性企業(yè)DOMO估值也達(dá)到20億美元,成長(zhǎng)速度遠(yuǎn)超傳統(tǒng)商業(yè)軟件公司。
相比于可視化技術(shù),BI更偏重于實(shí)際的應(yīng)用,通過(guò)模板化、SaaS化及去代碼等方式,BI應(yīng)用范圍不再局限于數(shù)據(jù)科學(xué)家及企業(yè)高管,可預(yù)見(jiàn)未來(lái)企業(yè)內(nèi)部每個(gè)員工都可以通過(guò)BI工具獲知自己及所處部門(mén)的各項(xiàng)數(shù)據(jù),并能夠有針對(duì)性的改進(jìn)工作方式與方向。
已經(jīng)累計(jì)融資1.77億美元的Looker令用戶能夠使用自然語(yǔ)言進(jìn)行查詢,降低了查詢大型數(shù)據(jù)集的門(mén)檻;GoodData為企業(yè)提供大數(shù)據(jù)分析SaaS服務(wù),其所有的數(shù)據(jù)分析服務(wù)實(shí)現(xiàn)了100%云化,企業(yè)可以將公司已有數(shù)據(jù)導(dǎo)入GoodData的云平臺(tái),再對(duì)數(shù)據(jù)做跟蹤、切分、可視化、分析等處理。
BI領(lǐng)域一個(gè)有意思的應(yīng)用案例是Qlik公司的產(chǎn)品受到了中國(guó)海關(guān)總署的高度贊揚(yáng)。海關(guān)總署每天都需要進(jìn)行龐大的數(shù)據(jù)分析,Qlik則通過(guò)圖形化數(shù)據(jù)展示,使海關(guān)管理人員不再受平臺(tái)和時(shí)間的限制,能夠多視角長(zhǎng)跨度的分析,實(shí)現(xiàn)了對(duì)于現(xiàn)有海量數(shù)據(jù)的業(yè)務(wù)的快速展示,極大地促進(jìn)了稽查效果。(來(lái)源:星河研究院 編選:中國(guó)電子商務(wù)研究中心)